This Overlooked Variable Is the Key to the Pandemic
There’s something strange about this coronavirus pandemic. Even after months of extensive research by the global scientific community, many questions remain open.
Why, for instance, was there such an enormous death toll in northern Italy, but not the rest of the country? Just three contiguous regions in northern Italy have 25,000 of the country’s nearly 36,000 total deaths; just one region, Lombardy, has about 17,000 deaths. Almost all of these were concentrated in the first few months of the outbreak. What happened in Guayaquil, Ecuador, in April, when so many died so quickly that bodies were abandoned in the sidewalks and streets?* Why, in the spring of 2020, did so few cities account for a substantial portion of global deaths, while many others with similar density, weather, age distribution, and travel patterns were spared? What can we really learn from Sweden, hailed as a great success by some because of its low case counts and deaths as the rest of Europe experiences a second wave, and as a big failure by others because it did not lock down and suffered excessive death rates earlier in the pandemic? Why did widespread predictions of catastrophe in Japan not bear out? The baffling examples go on.
I’ve heard many explanations for these widely differing trajectories over the past nine months—weather, elderly populations, vitamin D, prior immunity, herd immunity—but none of them explains the timing or the scale of these drastic variations. But there is a potential, overlooked way of understanding this pandemic that would help answer these questions, reshuffle many of the current heated arguments, and, crucially, help us get the spread of COVID-19 under control.